Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1927
DC FieldValueLanguage
dc.contributor.authorFerenc, Goranen_US
dc.contributor.authorTimotijević, Dragojeen_US
dc.contributor.authorTanasijević, Ivanaen_US
dc.contributor.authorSimić, Danijelaen_US
dc.date.accessioned2025-04-09T13:20:24Z-
dc.date.available2025-04-09T13:20:24Z-
dc.date.issued2024-07-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1927-
dc.description.abstractThis paper investigates the application of fuzzy logic to enhance situational awareness in Advanced Driver Assistance Systems (ADAS). Situational awareness is critical for drivers to respond appropriately to dynamic driving scenarios. As car automation increases, monitoring situational awareness ensures that drivers can effectively take control of the vehicle when needed. Our study explores whether fuzzy logic can accurately assess situational awareness using a set of 14 critical predictors categorized into time decision, criticality, eye-related metrics, and driver experience. We based our work on prior research that used machine learning (ML) models to achieve high accuracy. Our proposed fuzzy logic system aims to match the predictive accuracy of ML models while providing additional benefits in terms of interpretability and robustness. This approach emphasizes a fresh perspective on situational awareness within ADAS, potentially improving safety and efficiency in real-world driving scenarios.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofApplied Sciences (Switzerland)en_US
dc.subjectautonomous vehiclesen_US
dc.subjectcognitive workloaden_US
dc.subjectdecision-making in autonomous drivingen_US
dc.subjectdriver monitoringen_US
dc.subjectfuzzy logicen_US
dc.subjecthuman–machine interfaceen_US
dc.subjectmachine learningen_US
dc.subjectsituational awarenessen_US
dc.titleTowards Enhanced Autonomous Driving Takeovers: Fuzzy Logic Perspective for Predicting Situational Awarenessen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/app14135697-
dc.identifier.scopus2-s2.0-85198402292-
dc.identifier.isi001266472200001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85198402292-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.issn2076-3417en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. 5697en_US
dc.relation.volume14en_US
dc.relation.issue13en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0003-3764-1269-
crisitem.author.orcid0000-0002-3840-9931-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Jul 22, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.