Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1923
DC FieldValueLanguage
dc.contributor.authorŠukilović, Tijanaen_US
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2025-04-08T14:58:35Z-
dc.date.available2025-04-08T14:58:35Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1923-
dc.description.abstractWe study the integrability of the sub-Riemannian geodesic flow induced by the general left-invariant Riemannian metric on 𝑆3. We are interested in two different classes of this problem: the first is associated with the left-invariant distribution and the second with the right-invariant distribution. It is well known that the standard metric on the sphere 𝑆 3 is bi-invariant and the corresponding geodesic flow is integrable in the non-commutative sense for both types of distributions. Not surprisingly, the same statement holds for the arbitrary left-invariant metric associated with the left-invariant distribution. The Berger spheres form a special class of examples of left-invariant metrics obtained from the standard metric by shrinking along the fibers of a Hopf fibration. We show that the Hamiltonian LR system corresponding to the left-invariant Berger metric and the right-invariant distribution is integrable in the ommutative sense.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički institut SANUen_US
dc.titleThe sub-Riemmanian geometry of three-dimensional Berger spheresen_US
dc.typeConference Objecten_US
dc.relation.conferenceInternational Conference Geometry, Dynamics, and Integrable Systems-GDIS(9 ; 2024 ; Zlatibor)en_US
dc.relation.publicationIX International Conference Geometry, Dynamics, and Integrable Systems : Book of abstractsen_US
dc.identifier.urlhttps://www.mi.sanu.ac.rs/~gdis/gdis2024/assets/PDF/zbornik_gdis_2024.pdf-
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationGeometryen_US
dc.relation.isbn978-86-80593-76-0en_US
dc.description.rankM34en_US
dc.relation.firstpage48en_US
dc.relation.lastpage48en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptGeometry-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.