Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1915
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.contributor.authorKocić, Đorđeen_US
dc.date.accessioned2025-04-07T14:19:22Z-
dc.date.available2025-04-07T14:19:22Z-
dc.date.issued2025-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1915-
dc.description.abstractThe sphere S<sup>6</sup>(1) is one of the four homogeneous, six-dimensional nearly Kähler manifolds, and the only one where the nearly Kähler structure is given with the standard metric. A nullity distribution of a submanifold consists of the vector fields $X$ such that the second fundamental form $h$ satisfies $h(X, .)=0$. The totally geodesic sphere S<sup>6</sup> trivially admits a five-dimensional nullity distribution. In this paper, we investigate non totally geodesic hypersurfaces of the nearly Kähler sphere S<sup>6</sup>(1), that admit nullity distribution of the maximal possible dimension, i.e. with nullity distribution of the dimension four and classify them.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Geometry and Physicsen_US
dc.subjectNearly Kähler six sphereen_US
dc.subjectNullity distributionen_US
dc.subjectAlmost complex structureen_US
dc.subjectWarped product manifolden_US
dc.titleHypersurfaces of the sphere S6(1) with four-dimensional nullity distributionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.geomphys.2025.105493-
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationGeometryen_US
dc.relation.issn0393-0440en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. 105493en_US
dc.relation.volume213en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptGeometry-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
crisitem.author.orcid0000-0003-2255-2992-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.