Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1907
DC FieldValueLanguage
dc.contributor.authorKlar, B.en_US
dc.contributor.authorMilošević, Bojanaen_US
dc.contributor.authorObradović, Markoen_US
dc.date.accessioned2025-04-04T17:24:01Z-
dc.date.available2025-04-04T17:24:01Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1907-
dc.description.abstractDensity estimation is one of the most important problems in nonparametric statistics, mainly due to its applications. However, in the case of circular data, it is insufficiently explored. Here we aim to fill in this gap by exploring the use of Fej´er kernel in the context of density estimation. We present some theoretical and empirical properties of such estimators, both in the classical setup, dealing with a random sample of circular data, and in the presence of the measurement error. The case of Berkson error model for circular data is considered here for the first time.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.titleOn Circular Density Estimation - Fejér Kernel Approachen_US
dc.typeConference Objecten_US
dc.relation.conferenceSerbian Mathematical Congress(15 ; 2024 ; Belgrade)en_US
dc.relation.publicationAbstracts of 15. Serbian Mathematical Congressen_US
dc.identifier.urlhttps://smak15.matf.bg.ac.rs/smak15/abstractFejer.pdf-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.description.rankM34en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Statistics-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
crisitem.author.orcid0000-0002-6826-3232-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.