Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1902
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Milošević, Bojana | en_US |
dc.date.accessioned | 2025-04-04T14:17:11Z | - |
dc.date.available | 2025-04-04T14:17:11Z | - |
dc.date.issued | 2014 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1902 | - |
dc.description.abstract | Let (X<sub>t,</sub> t \geq 0) be the sum of a Brownian motion and two independent compound Poisson processes, and let τₓ be the first hitting time of a fixed level x > 0 by this stochastic process. We show the existence of a density with respect to the Lebesgue measure. A link with ruin theory is also presented. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Niš : Prirodno-matematički fakultet | en_US |
dc.title | The Existence of the Density of the Ruin Time for the Sum of Two Compound Poisson Processes Perturbed by a Diffusion | en_US |
dc.type | Conference Object | en_US |
dc.relation.conference | Srpski matematički kongres=Serbian Mathematical Congress(13 ; 2014 ; Vrnjačka Banja) | en_US |
dc.relation.publication | 13. Serbian Mathematical Congress : Book of abstracts | en_US |
dc.identifier.url | https://tesla.pmf.ni.ac.rs/people/smak/book_of_abstracts.pdf | - |
dc.contributor.affiliation | Probability and Mathematical Statistics | en_US |
dc.relation.isbn | 978-86-6275-026-6 | en_US |
dc.description.rank | M34 | en_US |
dc.relation.firstpage | 58 | en_US |
dc.relation.lastpage | 58 | en_US |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Conference Object | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Probability and Statistics | - |
crisitem.author.orcid | 0000-0001-8243-9794 | - |
Appears in Collections: | Research outputs |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.