Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/189
DC FieldValueLanguage
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorPrvulović, Branislaven_US
dc.date.accessioned2022-08-06T17:08:47Z-
dc.date.available2022-08-06T17:08:47Z-
dc.date.issued2014-09-15-
dc.identifier.issn01668641en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/189-
dc.description.abstractImmersion dimension of a smooth manifold is the least integer d such that there is an immersion of that manifold into d-dimensional Euclidean space. By using the obstruction theory, we determine the exact value of the immersion dimension for Grassmann manifolds G3,n when n is a power of two. © 2014 Elsevier B.V.en
dc.relation.ispartofTopology and its Applicationsen
dc.subjectGrassmannianen
dc.subjectImmersionen
dc.subjectModified Postnikov toweren
dc.titleNote on immersion dimension of real Grassmanniansen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.topol.2014.07.001-
dc.identifier.scopus2-s2.0-84904258862-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84904258862-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationTopologyen_US
dc.relation.firstpage38en
dc.relation.lastpage42en
dc.relation.volume175en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-8571-5210-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 9, 2024

Page view(s)

11
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.