Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/189
DC FieldValueLanguage
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorPrvulović, Branislaven_US
dc.date.accessioned2022-08-06T17:08:47Z-
dc.date.available2022-08-06T17:08:47Z-
dc.date.issued2014-09-15-
dc.identifier.issn01668641en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/189-
dc.description.abstractImmersion dimension of a smooth manifold is the least integer d such that there is an immersion of that manifold into d-dimensional Euclidean space. By using the obstruction theory, we determine the exact value of the immersion dimension for Grassmann manifolds G3,n when n is a power of two. © 2014 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofTopology and its Applicationsen_US
dc.subjectGrassmannianen_US
dc.subjectImmersionen_US
dc.subjectModified Postnikov toweren_US
dc.titleNote on immersion dimension of real Grassmanniansen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.topol.2014.07.001-
dc.identifier.scopus2-s2.0-84904258862-
dc.identifier.isi000340995100004-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84904258862-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationTopologyen_US
dc.relation.issn0166-8641en_US
dc.description.rankM22en_US
dc.relation.firstpage38en_US
dc.relation.lastpage42en_US
dc.relation.volume175en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-8571-5210-
crisitem.author.orcid0009-0003-3586-3658-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 5, 2025

Page view(s)

13
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.