Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1894
DC FieldValueLanguage
dc.contributor.authorAleksić, D.en_US
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-04-03T17:10:39Z-
dc.date.available2025-04-03T17:10:39Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1894-
dc.description.abstractA multivariate normality assumption is a crucial for validity of many methods of statistical inference. Therefore, there are many proposed statistical tests for testing the mentioned assumption. However, all of the currently available tests are suitable for complete samples. When the data are not complete, i.e. some of the values are missing, one needs to adapt the existing methodology to overcome this issue. Here, we consider several approaches for usage of BHEP test for testing the multivariate normality in the context of incomplete datasets with various missingness mechanisms. We explore behavior of each of them for large sample sizes, i.e. asymptotically, as well as for small sample sizes in an extensive empirical study.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.titleTo impute or not to? A multivariate goodness-of-fit testing perspectiveen_US
dc.typeConference Objecten_US
dc.relation.conferenceSrpski matematički kongres(15 ; 2024 ; Beograd)en_US
dc.relation.publicationApstrakti XV Srpskog matematičkog kongresaen_US
dc.identifier.urlhttps://smak15.matf.bg.ac.rs/smak15/AleksicMilosevic15Smak.pdf-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.description.rankM34en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.