Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1891
DC FieldValueLanguage
dc.contributor.authorBatsidis, A.en_US
dc.contributor.authorJiménez Gamero, M.D.en_US
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-04-03T14:01:24Z-
dc.date.available2025-04-03T14:01:24Z-
dc.date.issued2023-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1891-
dc.description.abstractThe family of generalized Poisson (GP) distributions, which contain among many others as special cases the Compound Poisson and Katz distributions, is a flexible family of distributions for modelling count data. The probability generating function (PGF) of the GP is the unique PGF satisfying certain differential equation. Based on this property, a goodness-of-fit test for the family of GP distributions is proposed and studied. The test is proved to be consistent against fixed alternatives and its null distribution can be consistently approximated by a parametric bootstrap. The goodness of the bootstrap estimator and the power for finite sample sizes are numerically assessed.en_US
dc.language.isoenen_US
dc.titleGoodness of fit for the generalized Poisson distribution based on the probability generating functionen_US
dc.typeConference Objecten_US
dc.relation.conferenceInternational Workshop on Applied Probability-IWAP(10 ; 2023 ; Thessaloniki)en_US
dc.relation.publication10th International Workshop on Applied Probability-IWAP2023, Thessalonikien_US
dc.identifier.urlhttps://iwap2020.web.auth.gr/wp-content/uploads/2023/06/Book-of-abstracts_1.pdf-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.description.rankM34en_US
dc.relation.firstpage17en_US
dc.relation.lastpage17en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.