Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1865
DC FieldValueLanguage
dc.contributor.authorCuparić, Marijaen_US
dc.contributor.authorEbner, B.en_US
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-04-01T16:51:19Z-
dc.date.available2025-04-01T16:51:19Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1865-
dc.description.abstractIn diverse applied research areas, encountering spherical and hyperspherical data is common, highlighting the essential task of assessing in dependence within such data structures. In this context, some properties of test statistics that rely on distance correlation measures initially introduced for energy distance are presented, and their generalizations are based on strongly negative definite kernels. One significant advantage of this method is its versatility across different types of directional data, allowing for the examination of independence among vectors of varying characteristics. In addition, they are shown to be powerful compared to existing competitors.en_US
dc.language.isoenen_US
dc.titleTesting independence for spherical and hyperspherical data: Kernel-based approachen_US
dc.typeConference Objecten_US
dc.relation.conferenceHiTEc meeting and CoDES Workshop(2024 ; Limasol)en_US
dc.relation.publicationHiTEc meeting and Workshop on Complex data in Econometrics and Statisticsen_US
dc.identifier.doihttps://www.cmstatistics.org/hiteccodes2024/docs/HITECCODES2024_BoA.pdf?20240305222439-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.description.rankM32en_US
dc.relation.firstpage5en_US
dc.relation.lastpage5en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptProbability and Statistics-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-5071-8350-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.