Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/185
DC FieldValueLanguage
dc.contributor.authorMilošević, Nelaen_US
dc.contributor.authorPetrović, Zoranen_US
dc.date.accessioned2022-08-06T17:08:46Z-
dc.date.available2022-08-06T17:08:46Z-
dc.date.issued2015-12-01-
dc.identifier.issn00114642en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/185-
dc.description.abstractOrder complex is an important object associated to a partially ordered set. Following a suggestion from V. A. Vassiliev (1994), we investigate an order complex associated to the partially ordered set of nontrivial ideals in a commutative ring with identity. We determine the homotopy type of the geometric realization for the order complex associated to a general commutative ring with identity. We show that this complex is contractible except for semilocal rings with trivial Jacobson radical when it is homotopy equivalent to a sphere.en
dc.relation.ispartofCzechoslovak Mathematical Journalen
dc.subjectcommutative ringen
dc.subjecthomotopy typeen
dc.subjectidealen
dc.subjectorder complexen
dc.titleOrder complex of ideals in a commutative ring with identityen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10587-015-0219-9-
dc.identifier.scopus2-s2.0-84973883588-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84973883588-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage947en
dc.relation.lastpage952en
dc.relation.volume65en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-8571-5210-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 10, 2024

Page view(s)

16
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.