Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1858
DC FieldValueLanguage
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-04-01T07:57:09Z-
dc.date.available2025-04-01T07:57:09Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1858-
dc.description.abstractHyperspherical or directional data naturally arise in many different earth sciences, such as geology, seismology, astrophysics, oceanography, and meteorology, as well as in studies of animal behavior, proteomics, and neuroscience. However, the special structure of such data makes it quite challenging to identify associations, primarily due to the non-trivial adaptation of statistical methodologies designed for Euclidean data. Here, we present recent results in detecting dependence using generalized energy distance statistics and extend this methodology for application to variable screening in high-dimensional data cases.en_US
dc.language.isoenen_US
dc.titleUnderstanding Spherical and Hyperspherical Data: From Association Measurement to Variable Selectionen_US
dc.typeConference Objecten_US
dc.relation.conferenceScientific Diaspora Days(2024)en_US
dc.relation.publicationScientific Diaspora Days 2024en_US
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.description.rankM32en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.