Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1849
DC FieldValueLanguage
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-03-31T10:19:11Z-
dc.date.available2025-03-31T10:19:11Z-
dc.date.issued2019-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1849-
dc.description.abstractThe uniform distribution is one of the most used distribution in statistical modeling and computer science. Therefore ensuring that the data come from a uniform distribution is of huge importance. Here we present a review of classical and several recent characterization based uniformity tests and their adaptations for testing the composite null hypothesis of rectangular distributions on arbitrary support. Also, some applications in time series will be presented. The presented tests will be compared with respect to several criteria.en_US
dc.language.isoenen_US
dc.publisherPodgorica : Matematički forumen_US
dc.titleTesting uniformity-characterization based approachen_US
dc.typeConference Objecten_US
dc.relation.conferenceMathematical Meeting of Serbia and Montenegro(2019 ; Budva)en_US
dc.relation.publicationMathematical Meeting of Serbia and Montenegro : Book of abstracts=Сусрет математичара Србије и Црне Горе : Књига апстракатаen_US
dc.identifier.doihttps://www.mathforum.me/en/naucni-skupovi/suretmatsrbcg/smscg-knjiga-apstrakata/-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.description.rankM64en_US
dc.relation.firstpage8en_US
dc.relation.lastpage8en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.