Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1844
DC FieldValueLanguage
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-03-31T07:51:30Z-
dc.date.available2025-03-31T07:51:30Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1844-
dc.description.abstractHere we address the challenges associated with independence testing in non-Euclidean spaces, which are increasingly common in modern applications. Traditional approaches based on Euclidean distance measures often prove inadequate for data with spherical, hyperspherical, or other non-Euclidean structures, necessitating the development of new methodologies. We consider kernel-based generalizations of distance covariance that enable efficient independence testing in such spaces. Moreover, we explore its potential in marginal screening particularly when data components are of different types. Through extensive empirical studies, we demonstrate that our proposed approaches significantly enhance performance and accuracy in comparison to conventional methods.en_US
dc.language.isoenen_US
dc.titleIndependence testing and variable selection problems: non-Euclidean perspectiveen_US
dc.typeConference Objecten_US
dc.relation.conferenceInternational Day of Women in Statistics and Data Science IDWSDS(2024)en_US
dc.relation.publicationInternational Day of Women in Statistics and Data Science (IDWSDS 2024)en_US
dc.identifier.urlhttps://www.idwsds.org/-
dc.identifier.urlhttps://www.idwsds.org/wp-content/uploads/2024/10/2024-Program-Book.pdf-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.description.rankM32en_US
dc.relation.firstpage55en_US
dc.relation.lastpage55en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.