Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/183
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Moconja, Slavko | en_US |
dc.date.accessioned | 2022-08-06T17:03:47Z | - |
dc.date.available | 2022-08-06T17:03:47Z | - |
dc.date.issued | 2015-01-01 | - |
dc.identifier.issn | 03501302 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/183 | - |
dc.description.abstract | We investigate if every quasi-minimal group is abelian, and give a positive answer for a quasi-minimal pure group having a ø-definable partial order with uncountable chains. We also relate two properties of a complete theory in a countable language: the existence of a quasi-minimal model and the existence of a strongly regular type. As a consequence we derive the equivalence of conjectures on commutativity of quasi-minimal groups and commutativity of regular groups. | en |
dc.relation.ispartof | Publications de l'Institut Mathematique | en |
dc.subject | Quasi-minimal group | en |
dc.subject | Strongly regular type | en |
dc.title | On commutativity of quasi-minimal groups | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/PIM150510030M | - |
dc.identifier.scopus | 2-s2.0-84949309974 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84949309974 | - |
dc.contributor.affiliation | Algebra and Mathematical Logic | en_US |
dc.relation.firstpage | 31 | en |
dc.relation.lastpage | 44 | en |
dc.relation.volume | 98 | en |
dc.relation.issue | 112 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Algebra and Mathematical Logic | - |
crisitem.author.orcid | 0000-0003-4095-8830 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 9, 2024
Page view(s)
8
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.