Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1833
DC FieldValueLanguage
dc.contributor.authorEbner, B.en_US
dc.contributor.authorJiménez Gamero, M.D.en_US
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-03-29T15:12:09Z-
dc.date.available2025-03-29T15:12:09Z-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1833-
dc.description.abstractWe review methods to estimate eigenvalues of covariance operators associated with limiting Gaussian processes. In particular, we introduce the Rayleigh-Ritz method for approximating the largest eigenvalue and, for the first time, apply it in the context of statistical goodness-of-fit testing. This application focuses on limit distributions of statistics of the weighted L² type, particularly in distribution-free or classical testing scenarios, such as testing for exponentiality or normality in both univariate and multivariate data. Lastly, we demonstrate the application of these methods across various contexts, illustrating how accurate eigenvalue estimation can lead to an approximation of the limit distribution using the Pearson system, and how this influences efficiency assessments of the asymptotic Bahadur type.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.titleEigenvalues approximation of integral covariance operators with applications to weighted L² statisticsen_US
dc.typeConference Objecten_US
dc.relation.conferenceStatistical Modelling with Applications StatMod(2024 ; Belgrade)en_US
dc.relation.publicationStatistical Modelling with Aplications StatMod2024 : Book of Abstractsen_US
dc.identifier.urlhttps://statmod2024.sciencesconf.org/data/pages/BoAStatMod.pdf-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.isbn978-86-7589-194-9en_US
dc.description.rankM32en_US
dc.relation.firstpage15en_US
dc.relation.lastpage15en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.