Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1818
DC FieldValueLanguage
dc.contributor.authorLukić, Žikicaen_US
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-03-26T16:11:26Z-
dc.date.available2025-03-26T16:11:26Z-
dc.date.issued2024-10-01-
dc.identifier.issn00203157-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1818-
dc.description.abstractThis paper introduces a novel two-sample test for a broad class of orthogonally invariant positive definite symmetric matrix distributions. Our test is the first of its kind, and we derive its asymptotic distribution. To estimate the test power, we use a warp-speed bootstrap method and consider the most common matrix distributions. We provide several real data examples, including the data for main cryptocurrencies and stock data of major US companies. The real data examples demonstrate the applicability of our test in the context closely related to algorithmic trading. The popularity of matrix distributions in many applications and the need for such a test in the literature are reconciled by our findings.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnnals of the Institute of Statistical Mathematicsen_US
dc.subjectHankel transformen_US
dc.subjectInverse Wishart distributionen_US
dc.subjectStability of cryptomarketsen_US
dc.subjectWishart distributionen_US
dc.titleA novel two-sample test within the space of symmetric positive definite matrix distributions and its application in financeen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10463-024-00902-z-
dc.identifier.scopus2-s2.0-85189793351-
dc.identifier.isi001198528700001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85189793351-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.issn0020-3157en_US
dc.description.rankM23en_US
dc.relation.firstpage797en_US
dc.relation.lastpage820en_US
dc.relation.volume76en_US
dc.relation.issue5en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 18, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.