Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1816
DC FieldValueLanguage
dc.contributor.authorMeintanis, S. G.en_US
dc.contributor.authorMilošević, Bojanaen_US
dc.contributor.authorJiménez–Gamero, M. D.en_US
dc.date.accessioned2025-03-26T15:27:14Z-
dc.date.available2025-03-26T15:27:14Z-
dc.date.issued2024-09-01-
dc.identifier.issn01679473-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1816-
dc.description.abstractTests of fit for classes of distributions that include the Weibull, the Pareto and the Fréchet families are proposed. The new tests employ the novel tool of the min–characteristic function and are based on an L2–type weighted distance between this function and its empirical counterpart applied on suitably standardized data. If data–standardization is performed using the MLE of the distributional parameters then the method reduces to testing for the standard member of the family, with parameter values known and set equal to one. Asymptotic properties of the tests are investigated. A Monte Carlo study is presented that includes the new procedure as well as competitors for the purpose of specification testing with three extreme value distributions. The new tests are also applied on a few real–data sets.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputational Statistics and Data Analysisen_US
dc.subjectExtreme–value distributionsen_US
dc.subjectGoodness–of–fit testen_US
dc.subjectInvariant testsen_US
dc.subjectMin–characteristic functionen_US
dc.titleGoodness–of–fit tests based on the min–characteristic functionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.csda.2024.107988-
dc.identifier.scopus2-s2.0-85193434232-
dc.identifier.isi001346608300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85193434232-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.issn0167-9473en_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. 107988en_US
dc.relation.volume197en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Apr 18, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.