Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1815
DC FieldValueLanguage
dc.contributor.authorLukić, Žikicaen_US
dc.contributor.authorMilošević, Bojanaen_US
dc.date.accessioned2025-03-26T15:10:58Z-
dc.date.available2025-03-26T15:10:58Z-
dc.date.issued2024-12-01-
dc.identifier.issn09325026-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1815-
dc.description.abstractIn this study, we introduce the first-of-its-kind class of tests for detecting change-points in the distribution of a sequence of independent matrix-valued random variables. The tests are constructed using the weighted square integral difference of the empirical orthogonally invariant Hankel transforms. The test statistics have a convenient closed-form expression, making them easy to implement in practice. We present their limiting properties and demonstrate their quality through an extensive simulation study. We utilize these tests for change-point detection in cryptocurrency markets to showcase their practical use. The detection of change-points in this context can have various applications in constructing and analyzing novel trading systems.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofStatistical Papersen_US
dc.subject62H15en_US
dc.subject62P05en_US
dc.subjectChange-point detectionen_US
dc.subjectIntegral transformsen_US
dc.subjectMatrix distributionsen_US
dc.titleChange-point analysis for matrix data: the empirical Hankel transform approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00362-024-01596-4-
dc.identifier.scopus2-s2.0-85207563145-
dc.identifier.isi001344653800001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85207563145-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.issn0932-5026en_US
dc.description.rankM22en_US
dc.relation.firstpage5955en_US
dc.relation.lastpage5980en_US
dc.relation.volume65en_US
dc.relation.issue9en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Mathematical Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 3, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.