Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1814
DC FieldValueLanguage
dc.contributor.authorBatsidis, A.en_US
dc.contributor.authorMilošević, Bojanaen_US
dc.contributor.authorJiménez–Gamero, M. D.en_US
dc.date.accessioned2025-03-26T14:51:10Z-
dc.date.available2025-03-26T14:51:10Z-
dc.date.issued2025-
dc.identifier.issn02331888-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1814-
dc.description.abstractThis paper presents and examines computationally convenient goodness-of-fit tests for the family of generalized Poisson distributions, which encompasses notable distributions such as the Compound Poisson and the Katz distributions. The tests are consistent against fixed alternatives and their null distribution can be consistently approximated by a parametric bootstrap. The goodness of the bootstrap estimator and the power for finite sample sizes are numerically assessed through an extensive simulation experiment, including comparisons with other tests. In many cases, the novel tests either outperform or match the performance of existing ones. Real data applications are considered for illustrative purposes.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.relation.ispartofStatisticsen_US
dc.subjectgeneralized Poissonen_US
dc.subjectGoodness-of-fiten_US
dc.subjectparametric bootstrapen_US
dc.subjectprobability generating functionen_US
dc.titleGoodness-of-fit tests for generalized Poisson distributionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/02331888.2024.2433167-
dc.identifier.scopus2-s2.0-85211168050-
dc.identifier.isi001368525700001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85211168050-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.issn0233-1888en_US
dc.description.rankM22en_US
dc.relation.firstpage276en_US
dc.relation.lastpage304en_US
dc.relation.volume59en_US
dc.relation.issue2en_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.