Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/180
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Moconja, Slavko | en_US |
dc.contributor.author | Tanović, Predrag | en_US |
dc.date.accessioned | 2022-08-06T17:03:46Z | - |
dc.date.available | 2022-08-06T17:03:46Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 09335846 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/180 | - |
dc.description.abstract | We present a relatively simple description of binary, definable subsets of models of weakly quasi-o-minimal theories. In particular, we closely describe definable linear orders and prove a weak version of the monotonicity theorem. We also prove that weak quasi-o-minimality of a theory with respect to one definable linear order implies weak quasi-o-minimality with respect to any other such order. | en |
dc.relation.ispartof | Archive for Mathematical Logic | en |
dc.subject | Binary reduct | en |
dc.subject | Definable linear orders | en |
dc.subject | Linearly ordered structures | en |
dc.subject | Weak quasi-o-minimality | en |
dc.title | Does weak quasi-o-minimality behave better than weak o-minimality? | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00153-021-00778-3 | - |
dc.identifier.scopus | 2-s2.0-85107304382 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85107304382 | - |
dc.contributor.affiliation | Algebra and Mathematical Logic | en_US |
dc.description.rank | M23 | en_US |
dc.relation.firstpage | 81 | en |
dc.relation.lastpage | 103 | en |
dc.relation.volume | 61 | en |
dc.relation.issue | 1-2 | en |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.dept | Algebra and Mathematical Logic | - |
crisitem.author.orcid | 0000-0003-4095-8830 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.