Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1772
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2025-03-22T09:43:36Z-
dc.date.available2025-03-22T09:43:36Z-
dc.date.issued2005-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1772-
dc.description.abstractGeodesics have a fundamental role in geometry of curved surfaces and manifolds, as well as in discrete geometry. We are going to expand some known facts about geodesics in regular differential geometry to the discrete geometry. We present a discrete analogy of the smooth surfaces parameterized by geodesics. The goal of our consideration is the definition of discrete surfaces generated by geodesics, studying of their properties and finding the algorithm for the generation of these surfaces.en_US
dc.language.isoenen_US
dc.publisherKragujevac : Faculty of Scienceen_US
dc.relation.ispartofKragujevac Journal of Mathematicsen_US
dc.subjectGeodesicsen_US
dc.subjectdiscrete geometryen_US
dc.subjectgeodesic polyhedraen_US
dc.subjectgeodesic netsen_US
dc.subjectOptimizationen_US
dc.titleGeodesic polyhedra and netsen_US
dc.typeArticleen_US
dc.identifier.urlhttps://poincare.matf.bg.ac.rs/~zstanic//Papers/kjm1.pdf-
dc.relation.issn1450-9628en_US
dc.description.rankM51en_US
dc.relation.firstpage41en_US
dc.relation.lastpage55en_US
dc.relation.volume28en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.