Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1765
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2025-03-21T17:35:14Z-
dc.date.available2025-03-21T17:35:14Z-
dc.date.issued2007-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1765-
dc.description.abstractA graph is called $Q$-integral if its signless Laplacian spectrum consists entirely of integers. We establish that there are exactly 172 connected $Q$-integral graphs up to 10 vertices. Pictures or adjacency matrices of those graphs, their $Q$-spectra, some data and comments are given. In addition, we present the connected graphs of the smallest order (which are neither regular nor complete bipartite) being integral in the sense of each of the following three spectra: usual one (related to the adjacency matrix), Laplacian and signless Laplacian.en_US
dc.language.isoenen_US
dc.publisherNovi Sad : Department of Mathematics and Informatics, Faculty of Scienceen_US
dc.relation.ispartofNovi Sad Journal of Mathematicsen_US
dc.subjectSignless Laplacian spectrumen_US
dc.subjectIntegral eigenvaluesen_US
dc.titleThere are exactly 172 connected Q-integral graphs up to 10 verticesen_US
dc.typeArticleen_US
dc.identifier.urlhttps://poincare.matf.bg.ac.rs/~zstanic//Papers/nsjom1.pdf-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn2406-2014en_US
dc.description.rankM51en_US
dc.relation.firstpage193en_US
dc.relation.lastpage205en_US
dc.relation.volume37en_US
dc.relation.issue2en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.