Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1748
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2025-03-20T16:04:36Z-
dc.date.available2025-03-20T16:04:36Z-
dc.date.issued2006-
dc.identifier.issn0350-1302-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1748-
dc.description.abstractWe consider the problem of determining all the members of an arbitrary family of equiseparable trees. We introduce the concept of saturation (based on the number partitions). After that, we use the same concept to obtain the least upper bound for the difference in the diameters of two equiseparable trees with m edges. We prove that this bound is equal to $(m-4)/3$, where $m$ is the size of trees.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički institut SANUen_US
dc.relation.ispartofPublications de l’Institut Mathematiqueen_US
dc.subjectequiseparable treeen_US
dc.subjectsaturationen_US
dc.subjectnumber partitionen_US
dc.subjectdiameteren_US
dc.titleDetermination of large families and diameter of equiseparable treesen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/pim0693029s-
dc.identifier.urlhttp://dx.doi.org/10.2298/PIM0693029S-
dc.identifier.urlhttp://dx.doi.org/10.2298/pim0693029s-
dc.identifier.urlhttp://elib.mi.sanu.ac.rs/files/journals/publ/99/n093p029.pdf-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0350-1302en_US
dc.description.rankM51en_US
dc.relation.firstpage29en_US
dc.relation.lastpage36en_US
dc.relation.issue(N.S.) 79 (93)en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.