Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1732
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2025-03-19T10:31:51Z-
dc.date.available2025-03-19T10:31:51Z-
dc.date.issued2025-
dc.identifier.issn2300-7451-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1732-
dc.description.abstractFor the graphs $G$ and $H$ , the spectral deviation of $H$ from $G$ is defined as $$\rho_G(H)=\sum_{\mu \in H}min_{\lambda \in G} \lvert \lambda−\mu \rvert$$, where $\in$ designates that the given number is an eigenvalue of the adjacency matrix of the corresponding graph. In this study, we consider the problem of existence of a proper induced subgraph $H$ of a prescribed graph $G$ such that $\rho_G(H)=0$ , and the problem of determination of all such subgraphs. We investigate these problems in the framework of Smith graphs and their induced subgraphs, graphs with small second largest eigenvalue, graphs with small number of either positive or distinct eigenvalues, integral graphs, and chain graphs. Our results can be interesting in the context of graphs with a fixed number of distinct eigenvalues, eigenvalue distribution, or spectral distances of graphs.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofSpecial Matricesen_US
dc.subjectBounded eigenvaluesen_US
dc.subjectdistinct eigenvaluesen_US
dc.subjectintegral graphen_US
dc.subjectChain graphen_US
dc.titleSpectral deviations of graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/spma-2024-0030-
dc.identifier.isi001414779600001-
dc.identifier.urlhttp://dx.doi.org/10.1515/spma-2024-0030-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn2300-7451en_US
dc.relation.firstpageArticle no. 20240030en_US
dc.relation.volume13en_US
dc.relation.issue1en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.