Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/172
DC FieldValueLanguage
dc.contributor.authorJovanović, Milanen_US
dc.contributor.authorMilošević, Bojanaen_US
dc.contributor.authorNikitin, Ya Yuen_US
dc.contributor.authorObradović, Markoen_US
dc.contributor.authorVolkova, K. Yuen_US
dc.date.accessioned2022-08-06T16:46:17Z-
dc.date.available2022-08-06T16:46:17Z-
dc.date.issued2015-10-01-
dc.identifier.issn01679473en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/172-
dc.description.abstractAbstract Two families of scale-free exponentiality tests based on the recent characterization of exponentiality by Arnold and Villasenor are proposed. The test statistics are constructed using suitable functionals of U-empirical distribution functions. The family of integral statistics can be reduced to V- or U-statistics with relatively simple non-degenerate kernels. They are asymptotically normal and have reasonably high local Bahadur efficiency under common alternatives. This efficiency is compared with simulated powers of new tests. On the other hand, the Kolmogorov type tests demonstrate very low local Bahadur efficiency and rather moderate power for common alternatives, and can hardly be recommended to practitioners. The conditions of local asymptotic optimality of new tests are also explored and for both families special "most favourable" alternatives for which the tests are fully efficient are described.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputational Statistics and Data Analysisen_US
dc.subjectBahadur efficiencyen_US
dc.subjectOrder statisticsen_US
dc.subjectTesting of exponentialityen_US
dc.subjectU-statisticsen_US
dc.titleTests of exponentiality based on Arnold-Villasenor characterization and their efficienciesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.csda.2015.03.019-
dc.identifier.scopus2-s2.0-84929353158-
dc.identifier.isi000357708200008-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84929353158-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.issn0167-9473en_US
dc.description.rankM21en_US
dc.relation.firstpage100en_US
dc.relation.lastpage113en_US
dc.relation.volume90en_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptProbability and Statistics-
crisitem.author.deptProbability and Statistics-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-5512-0956-
crisitem.author.orcid0000-0001-8243-9794-
crisitem.author.orcid0000-0002-6826-3232-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

24
checked on May 2, 2025

Page view(s)

11
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.