Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1728
DC FieldValueLanguage
dc.contributor.authorLiao, Yipengen_US
dc.contributor.authorChen, Chaohuien_US
dc.contributor.authorWei, Jiaen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2025-03-18T20:51:54Z-
dc.date.available2025-03-18T20:51:54Z-
dc.date.issued2025-
dc.identifier.issn1669-9637-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1728-
dc.description.abstractThe zero forcing number is defined as the minimum size of a zero forcing set, and features as an upper bound for the graph nullity. An expanded path $Pm_1,m_2,...,m_k$ (resp. expanded cycle $Cm_1,m_2,...,m_k$ ) is obtained from the $k$-vertex path (cycle) by replacing the $i$th vertex with an independent set of $m_i$ vertices. We prove that the zero forcing number of $Pm_1,m_2,...,m_k$ (resp. $Cm_1,m_2,...,m_k$ ) belongs to ${n−k, n−k+1} ({n−k+1, n−k+2})$, where $n$ is the number of vertices. It is also decided for which expanded paths and expanded cycles the zero forcing number is $n − k + 1$. As an application, we offer a new proof of the result of Liang, Li and Xu that gives a characterization of triangle-free graphs with zero forcing number $n − 3$. We also show that the zero forcing number of a cycle-spliced graph (i.e., a connected graph whose every block is a cycle) is $c + 1$, where $c$ is the cyclomatic number. This result induces an upper bound for the nullity of a cycle-spliced graph and extends the result of Wong, Zhou and Tian concerning the bipartite case.en_US
dc.language.isoenen_US
dc.publisherUnion Matematica Argentinaen_US
dc.relation.ispartofRevista de la Unión Matemática Argentinaen_US
dc.titleThe zero forcing number of expanded paths and cyclesen_US
dc.typeArticleen_US
dc.identifier.doi10.33044/revuma.5022-
dc.identifier.urlhttp://dx.doi.org/10.33044/revuma.5022-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn1669-9637en_US
dc.description.rankM23en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.