Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1703
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vujošević, Biljana | en_US |
dc.date.accessioned | 2025-03-16T12:29:14Z | - |
dc.date.available | 2025-03-16T12:29:14Z | - |
dc.date.issued | 2024-03-01 | - |
dc.identifier.issn | 00195588 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1703 | - |
dc.description.abstract | In this paper we observe the set of all continuous additive units (continuous addits) of the vacuum unit ω in the time ordered product system IΓ⊗(F), where F is a two-sided Hilbert module over the C∗-algebra B of all bounded operators acting on a Hilbert space of finite dimension. We prove that the set of all continuous addits of ω and F⊕B are isomorphic as Hilbert B-B modules. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Indian Journal of Pure and Applied Mathematics | en_US |
dc.subject | Addits | en_US |
dc.subject | Hilbert C -modules ∗ | en_US |
dc.subject | Product systems | en_US |
dc.subject | Time ordered product systems | en_US |
dc.title | Addits in time ordered product systems | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s13226-023-00375-5 | - |
dc.identifier.scopus | 2-s2.0-85146724136 | - |
dc.identifier.isi | 000921638600001 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85146724136 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.issn | 0019-5588 | en_US |
dc.description.rank | M23 | en_US |
dc.relation.firstpage | 412 | en_US |
dc.relation.lastpage | 418 | en_US |
dc.relation.volume | 55 | en_US |
dc.relation.issue | 1 | en_US |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-6910-6810 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.