Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1702
DC FieldValueLanguage
dc.contributor.authorPetrović, Zoranen_US
dc.date.accessioned2025-03-16T12:17:20Z-
dc.date.available2025-03-16T12:17:20Z-
dc.date.issued2009-01-01-
dc.identifier.issn03081087-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1702-
dc.description.abstractMotivated by the problem concerning the existence of non-singular bilinear maps, vector spaces of matrices consisting of matrices with rank bounded below are investigated. It is shown that bases for such spaces of maximum dimension can be chosen in such a way to consist of matrices of the minimal rank. An estimate of the ranks of matrices in particular types of bases for maximal such spaces is also given. This extends previously known results which were valid only in the case of spaces consisting of matrices of rank not equal to one. © 2009 Taylor & Francis.en_US
dc.publisherTaylor and Francisen_US
dc.relation.ispartofLinear and Multilinear Algebraen_US
dc.subjectNon-singular bilinear mapsen_US
dc.subjectRank conditionen_US
dc.subjectSpaces of matricesen_US
dc.titleBases of spaces of matrices satisfying rank conditionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081080802316198-
dc.identifier.scopus2-s2.0-70449394235-
dc.identifier.isi000268752300009-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/70449394235-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn0308-1087en_US
dc.description.rankM22en_US
dc.relation.firstpage625en_US
dc.relation.lastpage631en_US
dc.relation.volume57en_US
dc.relation.issue6en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-8571-5210-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.