Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1701
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Božić, Ivana | en_US |
dc.contributor.author | Petrović, Zoran | en_US |
dc.date.accessioned | 2025-03-16T12:06:58Z | - |
dc.date.available | 2025-03-16T12:06:58Z | - |
dc.date.issued | 2009-04-01 | - |
dc.identifier.issn | 00927872 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1701 | - |
dc.description.abstract | We investigate the properties of (directed) zero-divisor graphs of matrix rings. Then we use these results to discuss the relation between the diameter of the zero-divisor graph of a commutative ring R and that of the matrix ring Mn(R). © Taylor & Francis Group, LLC. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor and Francis | en_US |
dc.relation.ispartof | Communications in Algebra | en_US |
dc.subject | Commutative rings | en_US |
dc.subject | Matrix rings | en_US |
dc.subject | Zero-divisor graph | en_US |
dc.title | Zero-divisor graphs of matrices over commutative rings | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/00927870802465951 | - |
dc.identifier.scopus | 2-s2.0-69249196721 | - |
dc.identifier.isi | 000264642400007 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/69249196721 | - |
dc.contributor.affiliation | Algebra and Mathematical Logic | en_US |
dc.relation.issn | 0092-7872 | en_US |
dc.description.rank | M23 | en_US |
dc.relation.firstpage | 1186 | en_US |
dc.relation.lastpage | 1192 | en_US |
dc.relation.volume | 37 | en_US |
dc.relation.issue | 4 | en_US |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Algebra and Mathematical Logic | - |
crisitem.author.orcid | 0000-0002-8571-5210 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.