Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/16
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Antić, Miroslava | en_US |
dc.contributor.author | Đorić, Mirjana | en_US |
dc.contributor.author | Vrancken, Luc | en_US |
dc.date.accessioned | 2022-08-06T14:49:07Z | - |
dc.date.available | 2022-08-06T14:49:07Z | - |
dc.date.issued | 2006-01-01 | - |
dc.identifier.issn | 14398516 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/16 | - |
dc.description.abstract | In this paper, we study Lagrangian submanifolds of the nearly Kaehler 6-sphere. We derive a pinching result for the Ricci curvature of such submanifolds thus providing a characterisation of the totally geodesic submanifold. Our pinching result improves a previous result obtained by H. Li. © Springer-Verlag 2006. | en |
dc.relation.ispartof | Acta Mathematica Sinica, English Series | en_US |
dc.subject | Nearly Kaehler 6-sphere | en |
dc.subject | Ricci curvature | en |
dc.subject | Totally geodesic submanifold | en |
dc.subject | Totally real submanifold | en |
dc.title | Characterization of totally geodesic totally real 3-dimensional submanifolds in the 6-sphere | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10114-005-0798-8 | - |
dc.identifier.scopus | 2-s2.0-33746738748 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/33746738748 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 1557 | en_US |
dc.relation.lastpage | 1564 | en_US |
dc.relation.volume | 22 | en_US |
dc.relation.issue | 5 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-2111-7174 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
6
checked on Nov 15, 2024
Page view(s)
20
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.