Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1698
DC FieldValueLanguage
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorRoslavcev, Majaen_US
dc.date.accessioned2025-03-15T19:52:25Z-
dc.date.available2025-03-15T19:52:25Z-
dc.date.issued2023-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1698-
dc.description.abstractLet R be a Prüfer domain of Krull dimension one. We prove the existence of Gröbner bases for finitely generated submodules of finitely generated free modules over R[X], where the term order is POT, or, “position over term”. In order to do this, we first prove that there is a Gröbner basis for finitely generated ideals in R[X], which is a special case of the main result. The proof is based on the results from [3]. In addition to this we show, in the case of valuation domains, that every Gröbnerr basis is actually a strong Gröbner basis.en_US
dc.language.isoenen_US
dc.publisherBucharest : Romanian Academy of Scienceen_US
dc.relation.ispartofMathematical Reportsen_US
dc.subjectPrüfer domainsen_US
dc.subjectGröbner basesen_US
dc.titleGröbner bases for modules over Prüfer domainsen_US
dc.typeArticleen_US
dc.identifier.doi10.59277/mrar.2023.25.75.3.495-
dc.identifier.scopus2-s2.0-85176231971-
dc.identifier.isi001075925400010-
dc.identifier.urlhttp://imar.ro/journals/Mathematical_Reports/Pdfs/2023/3/10.pdf-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn1582-3067en_US
dc.description.rankM23en_US
dc.relation.firstpage495en_US
dc.relation.lastpage503en_US
dc.relation.volume25(75)en_US
dc.relation.issue3en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-8571-5210-
crisitem.author.orcid0000-0002-6545-421X-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.