Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1697
DC FieldValueLanguage
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorPucanović, Zoran S.en_US
dc.contributor.authorPešović, Marko D.en_US
dc.contributor.authorKovačević, Miloš A.en_US
dc.date.accessioned2025-03-15T18:07:02Z-
dc.date.available2025-03-15T18:07:02Z-
dc.date.issued2024-01-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1697-
dc.description.abstractWe introduce the general notion of a rank on a vector space, which includes both tensor rank and conventional matrix rank, but incorporates other examples as well. Extending this concept, we investigate vector spaces consisting of vectors with a lower bound on their rank. Our main result shows that bases for such spaces of maximum dimension can be chosen to consist exclusively of vectors of minimal rank. This generalization extends the results of [15, 36], with potential applications in different areas.en_US
dc.language.isoenen_US
dc.publisherAIMS pressen_US
dc.relation.ispartofAIMS Mathematicsen_US
dc.subjectrank functionen_US
dc.subjectsubspaces with rank conditionsen_US
dc.subjecttensor decompositionsen_US
dc.subjecttensor ranken_US
dc.titleSome insights into rank conditions of vector subspacesen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/math.20241152-
dc.identifier.scopus2-s2.0-85201003378-
dc.identifier.isi001287753500003-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85201003378-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn2473-6988en_US
dc.description.rankM21aen_US
dc.relation.firstpage23711en_US
dc.relation.lastpage23723en_US
dc.relation.volume9en_US
dc.relation.issue9en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-8571-5210-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.