Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1696
DC FieldValueLanguage
dc.contributor.authorKovačević, Miloš A.en_US
dc.contributor.authorPešović, Marko D.en_US
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorPucanović, Zoran S.en_US
dc.date.accessioned2025-03-15T17:55:06Z-
dc.date.available2025-03-15T17:55:06Z-
dc.date.issued2024-01-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1696-
dc.description.abstractPlayers' purchases in free-to-play online games often serve as crucial indicators of user engagement and behavior. Understanding these purchases not only enhances the personalization of the gaming experience but also enables the optimization of game monetization strategies. This paper introduces a methodology for predicting players' purchases using Transformers-sophisticated deep neural networks based on the Self-Attention technique, customized for processing sequential data. By discretizing the values of features representing a player's history and leveraging tokenized inputs related to the discretized history, the methodology aims to forecast whether a player will make a purchase within the next 3, 5, or 7 days.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Accessen_US
dc.subjectIn-game purchasesen_US
dc.subjectpredictionen_US
dc.subjectself-attentionen_US
dc.subjecttransformersen_US
dc.titlePredictive Analytics of In-game Transactions: Tokenized Player History and Self-Attention Techniquesen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2024.3477624-
dc.identifier.scopus2-s2.0-85207714939-
dc.identifier.isi001337879500001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85207714939-
dc.identifier.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713356-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn2169-3536en_US
dc.description.rankM22en_US
dc.relation.firstpage149263en_US
dc.relation.lastpage149271en_US
dc.relation.volume12en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-8571-5210-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.