Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1648
DC FieldValueLanguage
dc.contributor.authorBayer, Margareten_US
dc.contributor.authorDenker, Marken_US
dc.contributor.authorJelić Milutinović, Marijaen_US
dc.contributor.authorRowlands, Rowanen_US
dc.contributor.authorSundaram, Sheilaen_US
dc.contributor.authorXue, Leien_US
dc.date.accessioned2025-03-13T19:58:26Z-
dc.date.available2025-03-13T19:58:26Z-
dc.date.issued2024-01-01-
dc.identifier.issn01795376-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1648-
dc.description.abstractInspired by work of Fröberg (1990), and Eagon and Reiner (1998), we define the total k-cut complex of a graph G to be the simplicial complex whose facets are the complements of independent sets of size k in G. We study the homotopy types and combinatorial properties of total cut complexes for various families of graphs, including chordal graphs, cycles, bipartite graphs, the prism Kn×K2, and grid graphs, using techniques from algebraic topology and discrete Morse theory.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofDiscrete and Computational Geometryen_US
dc.subject05C69en_US
dc.subject05E45en_US
dc.subject57M15en_US
dc.subject57Q70en_US
dc.subjectChordal graphen_US
dc.subjectComplex of graphsen_US
dc.subjectHomotopyen_US
dc.subjectIndependent seten_US
dc.subjectMorse matchingen_US
dc.subjectSimplicial vertexen_US
dc.subjectVertex decomposabilityen_US
dc.titleTotal Cut Complexes of Graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00454-024-00630-4-
dc.identifier.scopus2-s2.0-85185459299-
dc.identifier.isi001168545300002-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85185459299-
dc.contributor.affiliationTopologyen_US
dc.relation.issn0179-5376en_US
dc.description.rankM22en_US
dc.relation.firstpage500en_US
dc.relation.lastpage527en_US
dc.relation.volume73en_US
dc.relation.issue2en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-6578-3224-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Mar 29, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.