Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/15
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.contributor.authorVrancken, Lucen_US
dc.date.accessioned2022-08-06T14:49:07Z-
dc.date.available2022-08-06T14:49:07Z-
dc.date.issued2022-
dc.identifier.issn16747283en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/15-
dc.description.abstractWe investigate n-dimensional (n ⩾ 4), conformally flat, minimal, Lagrangian submanifolds of the n-dimensional complex space form in terms of the multiplicities of the eigenvalues of the Schouten tensor and classify those that admit at most one eigenvalue of multiplicity one. In the case where the ambient space is ℂn, the quasi umbilical case was studied in Blair (2007). However, the classification there is not complete and several examples are missing. Here, we complete (and extend) the classification and we also deal with the case where the ambient complex space form has non-vanishing holomorphic sectional curvature.en_US
dc.relation.ispartofScience China Mathematicsen
dc.subject53B20en_US
dc.subject53B25en_US
dc.subjectcomplex space formen_US
dc.subjectconformally flaten_US
dc.subjectLagrangian submanifoldsen_US
dc.subjectwarped product submanifolden_US
dc.titleConformally flat, minimal, Lagrangian submanifolds in complex space formsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11425-021-1897-0-
dc.identifier.scopus2-s2.0-85122674189-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85122674189-
dc.contributor.affiliationGeometryen_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

22
checked on Nov 15, 2024

Page view(s)

14
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.