Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1574
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Colović, Uroš A. | en_US |
dc.contributor.author | Jovanović, Milica | en_US |
dc.contributor.author | Prvulović, Branislav | en_US |
dc.date.accessioned | 2025-03-10T08:24:19Z | - |
dc.date.available | 2025-03-10T08:24:19Z | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1574 | - |
dc.description.abstract | We give a description of the mod 2 cohomology algebra of the oriented Grassmann manifold $\tilde{G}_{2^t, 4}$ as the quotient of a polynomial algebra by a certain ideal. In the process we find a Gröbner basis for that ideal, which we then use to exhibit an additive basis for $H⁎(\tilda{G}_{2^t, 4} ; Z_2)$. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Topology and its Applications | en_US |
dc.title | Cohomology rings of oriented Grassmann manifolds $\tilde{G}_{2^t, 4}$ | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.topol.2025.109318 | - |
dc.contributor.affiliation | Topology | en_US |
dc.relation.issn | 0166-8641 | en_US |
dc.description.rank | M23 | en_US |
dc.relation.firstpage | Article no. 109318 | en_US |
dc.relation.volume | 367 | en_US |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Topology | - |
crisitem.author.orcid | 0009-0006-2505-0321 | - |
crisitem.author.orcid | 0009-0003-3586-3658 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.