Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1574
DC FieldValueLanguage
dc.contributor.authorColović, Uroš A.en_US
dc.contributor.authorJovanović, Milicaen_US
dc.contributor.authorPrvulović, Branislaven_US
dc.date.accessioned2025-03-10T08:24:19Z-
dc.date.available2025-03-10T08:24:19Z-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1574-
dc.description.abstractWe give a description of the mod 2 cohomology algebra of the oriented Grassmann manifold $\tilde{G}_{2^t, 4}$ as the quotient of a polynomial algebra by a certain ideal. In the process we find a Gröbner basis for that ideal, which we then use to exhibit an additive basis for $H⁎(\tilda{G}_{2^t, 4} ; Z_2)$.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofTopology and its Applicationsen_US
dc.titleCohomology rings of oriented Grassmann manifolds $\tilde{G}_{2^t, 4}$en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.topol.2025.109318-
dc.contributor.affiliationTopologyen_US
dc.relation.issn0166-8641en_US
dc.description.rankM23en_US
dc.relation.firstpageArticle no. 109318en_US
dc.relation.volume367en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptTopology-
crisitem.author.orcid0009-0006-2505-0321-
crisitem.author.orcid0009-0003-3586-3658-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.