Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/156
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jovanović, Milan | en_US |
dc.contributor.author | Milošević, Bojana | en_US |
dc.contributor.author | Obradović, Marko | en_US |
dc.contributor.author | Vidović, Zoran | en_US |
dc.date.accessioned | 2022-08-06T16:46:15Z | - |
dc.date.available | 2022-08-06T16:46:15Z | - |
dc.date.issued | 2021-01-01 | - |
dc.identifier.issn | 03545180 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/156 | - |
dc.description.abstract | In this paper we estimate R = P{X < Y} when X and Y are independent random variables following the Peng-Yan extended Weibull distribution. We find maximum likelihood estimator of R and its asymptotic distribution. This asymptotic distribution is used to construct asymptotic confidence intervals. In the case of equal shape parameters, we derive the exact confidence intervals, too. A procedure for deriving bootstrap-p confidence intervals is presented. The UMVUE of R and the UMVUE of its variance are derived and also the Bayes point and interval estimator of R for conjugate priors are obtained. Finally, we perform a simulation study in order to compare these estimators and provide a real data example. | en |
dc.relation.ispartof | Filomat | en_US |
dc.subject | Bayes estimator | en |
dc.subject | Bootstrap confidence intervals | en |
dc.subject | Extended Weibull distribution | en |
dc.subject | Maximum likelihood estimator | en |
dc.subject | stress-strength | en |
dc.subject | UMVUE | en |
dc.title | Inference on reliability of stress-strength model with peng-yan extended weibull distributions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/FIL2106927J | - |
dc.identifier.scopus | 2-s2.0-85120831550 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85120831550 | - |
dc.contributor.affiliation | Probability and Mathematical Statistics | en_US |
dc.contributor.affiliation | Probability and Mathematical Statistics | en_US |
dc.contributor.affiliation | Probability and Mathematical Statistics | en_US |
dc.relation.issn | 24060933 | en_US |
dc.description.rank | M22 | en_US |
dc.relation.firstpage | 1927 | en_US |
dc.relation.lastpage | 1948 | en_US |
dc.relation.volume | 35 | en_US |
dc.relation.issue | 6 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Probability and Mathematical Statistics | - |
crisitem.author.orcid | 0000-0001-5512-0956 | - |
crisitem.author.orcid | 0000-0001-8243-9794 | - |
crisitem.author.orcid | 0000-0002-6826-3232 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
5
checked on Nov 7, 2024
Page view(s)
17
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.