Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1563
DC FieldValueLanguage
dc.contributor.authorVidojević, Filipen_US
dc.contributor.authorDžamić, Andrijanaen_US
dc.contributor.authorDžamić, Dušanen_US
dc.contributor.authorMarić, Miroslaven_US
dc.date.accessioned2025-03-06T16:36:02Z-
dc.date.available2025-03-06T16:36:02Z-
dc.date.issued2025-12-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1563-
dc.description.abstractHybrid flow shop (HFS) environments are prevalent in various industries, including glass, steel, paper, and textiles, posing complex scheduling challenges. This paper introduces a novel approach employing Variable Neighborhood Search (VNS) to address the HFS scheduling problem, with a primary focus on minimizing makespan. The fundamental innovation lies in the fusion of VNS with domain-specific strategies, harnessing the adaptability of VNS. Departing significantly from conventional HFS approaches, our methodology incorporates a special encoding that allows jobs to wait strategically, even when free machines are available. This approach trades immediate machine utilization for the potential of improved makespan. Additionally, using this encoding, a proper decomposition of the problem is feasible. This innovative strategy aims to balance machine load while optimizing the overall scheduling performance. Experimental testing demonstrates the effectiveness of the proposed approach in comparison to existing methods.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Big Dataen_US
dc.subjectHybrid flow shopen_US
dc.subjectMathematical modellingen_US
dc.subjectSchedulingen_US
dc.subjectVariable neighborhood searchen_US
dc.titleA novel artificial intelligence search algorithm and mathematical model for the hybrid flow shop scheduling problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s40537-025-01085-x-
dc.identifier.scopus2-s2.0-85218082862-
dc.identifier.isi001410596300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85218082862-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.issn2196-1115en_US
dc.description.rankM21aen_US
dc.relation.firstpageArticle no. 23en_US
dc.relation.volume12en_US
dc.relation.issue1en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0002-5567-5633-
crisitem.author.orcid0000-0001-7446-0577-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.