Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1556
DC FieldValueLanguage
dc.contributor.authorMarinković, Vesnaen_US
dc.contributor.authorŠukilović, Tijanaen_US
dc.contributor.authorNovaković, Viktoren_US
dc.contributor.authorMarić, Filipen_US
dc.date.accessioned2025-03-05T08:08:33Z-
dc.date.available2025-03-05T08:08:33Z-
dc.date.issued2025-01-01-
dc.identifier.issn10122443-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1556-
dc.description.abstractAlthough there are several systems that successfully generate construction steps for ruler and compass construction problems, none of them provides readable synthetic correctness proofs for generated constructions. In this paper, we demonstrate how our triangle construction solver ArgoTriCS can cooperate with automated theorem provers for first-order logic and coherent logic so that it generates construction correctness proofs, that are both human-readable and formal (can be checked by interactive theorem provers such as Isabelle/HOL or Coq). For this purpose we identified a set of relevant lemmas and developed a coherent logic prover GCProver customized for geometry construction problems. Our experiments show that results are much better than with general purpose theorem provers.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnnals of Mathematics and Artificial Intelligenceen_US
dc.subjectAutomated theorem provingen_US
dc.subjectCoherent logicen_US
dc.subjectTriangle construction problemsen_US
dc.titleReadable automated proofs of ruler and compass constructionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10472-025-09971-z-
dc.identifier.scopus2-s2.0-85218230360-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85218230360-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.issn1012-2443en_US
dc.description.rankM22en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptGeometry-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000−0003−0526−899X-
crisitem.author.orcid0000-0001-7219-6960-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.