Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/153
DC FieldValueLanguage
dc.contributor.authorMilošević, Bojanaen_US
dc.contributor.authorJiménez-Gamero, M. Doloresen_US
dc.contributor.authorAlba-Fernández, M. Virtudesen_US
dc.date.accessioned2022-08-06T16:46:14Z-
dc.date.available2022-08-06T16:46:14Z-
dc.date.issued2021-01-01-
dc.identifier.issn00949655en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/153-
dc.description.abstractThe geometric distribution is one of the most widely used count distributions. Novel goodness of fit tests for this distribution are suggested taking advantage of a characterization of that distribution in terms of a differential equation involving its probability generating function. Several ways of looking at the characterization allow us to derive six test statistics. The connection between some of these test statistics and the ratio-plot device is stated. The asymptotic null distributions of these test statistics are derived. However, they depend on the unknown parameter of the geometric law. A suitable parametric bootstrap is used to estimate consistently each null distribution. Moreover, the almost sure limits of the test statistics under alternatives are obtained. The finite sample performance of the bootstrap approximation is assessed via simulation. The powers of the new tests are numerically compared with that of some existing ones, exhibiting competitive behaviour. Some real-life data set applications are included.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.relation.ispartofJournal of Statistical Computation and Simulationen_US
dc.subjectbootstrapen_US
dc.subjectgeometric lawen_US
dc.subjectgoodness of fiten_US
dc.subjectratio-ploten_US
dc.titleQuantifying the ratio-plot for the geometric distributionen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00949655.2021.1887185-
dc.identifier.scopus2-s2.0-85101918234-
dc.identifier.isi000623964200001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85101918234-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.issn0094-9655en_US
dc.description.rankM22en_US
dc.relation.firstpage2153en_US
dc.relation.lastpage2177en_US
dc.relation.volume91en_US
dc.relation.issue11en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Mathematical Statistics-
crisitem.author.orcid0000-0001-8243-9794-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Mar 29, 2025

Page view(s)

19
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.