Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1535
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhu, Max | en_US |
dc.contributor.author | Stanivuk, Siniša | en_US |
dc.contributor.author | Petrović, Andrija | en_US |
dc.contributor.author | Nikolić, Mladen | en_US |
dc.contributor.author | Lib, Pietro | en_US |
dc.date.accessioned | 2025-02-25T10:03:18Z | - |
dc.date.available | 2025-02-25T10:03:18Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1535 | - |
dc.description.abstract | We present a method to integrate Large Language Models (LLMs) and traditional tabular data classification techniques, addressing LLMs’ challenges like data serialization sensitivity and biases. We introduce two strategies utilizing LLMs for ranking categorical variables and generating priors on correlations between continuous variables and targets, enhancing performance in few-shot scenarios. We focus on Logistic Regression, introducing MonotonicLR that employs a non-linear monotonic function for mapping ordinals to cardinals while preserving LLM-determined orders. Validation against baseline models reveals the superior performance of our approach, especially in low-data scenarios, while remaining interpretable. | en_US |
dc.language.iso | en | en_US |
dc.subject | Large Language Models | en_US |
dc.subject | Few-shot tabular lerners | en_US |
dc.title | Incorporating LLM Priors into Tabular Learners | en_US |
dc.type | Conference Object | en_US |
dc.relation.conference | Table Representation Learning Workshop(2 ; 2023 ; New Orleans) | en_US |
dc.relation.publication | 2nd Table Representation Learning Workshop at NeurlPS | en_US |
dc.identifier.url | https://openreview.net/forum?id=OFV0uNeZ7R | - |
dc.contributor.affiliation | Informatics and Computer Science | en_US |
dc.description.rank | M33 | en_US |
item.openairetype | Conference Object | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Informatics and Computer Science | - |
Appears in Collections: | Research outputs |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.