Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1535
DC FieldValueLanguage
dc.contributor.authorZhu, Maxen_US
dc.contributor.authorStanivuk, Sinišaen_US
dc.contributor.authorPetrović, Andrijaen_US
dc.contributor.authorNikolić, Mladenen_US
dc.contributor.authorLib, Pietroen_US
dc.date.accessioned2025-02-25T10:03:18Z-
dc.date.available2025-02-25T10:03:18Z-
dc.date.issued2023-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1535-
dc.description.abstractWe present a method to integrate Large Language Models (LLMs) and traditional tabular data classification techniques, addressing LLMs’ challenges like data serialization sensitivity and biases. We introduce two strategies utilizing LLMs for ranking categorical variables and generating priors on correlations between continuous variables and targets, enhancing performance in few-shot scenarios. We focus on Logistic Regression, introducing MonotonicLR that employs a non-linear monotonic function for mapping ordinals to cardinals while preserving LLM-determined orders. Validation against baseline models reveals the superior performance of our approach, especially in low-data scenarios, while remaining interpretable.en_US
dc.language.isoenen_US
dc.subjectLarge Language Modelsen_US
dc.subjectFew-shot tabular lernersen_US
dc.titleIncorporating LLM Priors into Tabular Learnersen_US
dc.typeConference Objecten_US
dc.relation.conferenceTable Representation Learning Workshop(2 ; 2023 ; New Orleans)en_US
dc.relation.publication2nd Table Representation Learning Workshop at NeurlPSen_US
dc.identifier.urlhttps://openreview.net/forum?id=OFV0uNeZ7R-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.description.rankM33en_US
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.deptInformatics and Computer Science-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.