Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/14
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.contributor.authorKocić, Djordjeen_US
dc.date.accessioned2022-08-06T14:49:07Z-
dc.date.available2022-08-06T14:49:07Z-
dc.date.issued2021-
dc.identifier.issn13075624en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/14-
dc.description.abstractIt is well known that the sphere S6(1) admits an almost complex structure J which is nearly Kähler. A submanifold M of an almost Hermitian manifold is called a CR submanifold if it admits a differentiable almost complex distribution D1 such that its orthogonal complement is a totally real distribution. In this case the normal bundle of the submanifold also splits into two distributions D3, which is almost complex, and a totally real complement. In the case of the proper threedimensional CR submanifold of a six-dimensional manifold the distribution D3 is non-trivial. Here, we investigate three-dimensional CR submanifolds of the sphere S6(1) admitting an umbilic direction orthogonal to D3 and show that such submanifolds do not exist.en_US
dc.relation.ispartofInternational Electronic Journal of Geometryen_US
dc.subjectCR submanifoldsen_US
dc.subjectnearly Kähler 6-sphereen_US
dc.subjectumbilical directionen_US
dc.titleThree-Dimensional CR Submanifolds in S<sup>6</sup>(1) with Umbilical Direction Normal to D<inf>3</inf>en_US
dc.typeArticleen_US
dc.identifier.doi10.36890/IEJG.790910-
dc.identifier.scopus2-s2.0-85108566383-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85108566383-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage125en_US
dc.relation.lastpage131en_US
dc.relation.volume14en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

17
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.