Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/149
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Milinković, Darko | en_US |
dc.date.accessioned | 2022-08-06T16:39:52Z | - |
dc.date.available | 2022-08-06T16:39:52Z | - |
dc.date.issued | 2002-01-01 | - |
dc.identifier.issn | 09262245 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/149 | - |
dc.description.abstract | We give sufficient conditions for geodesics of Hofer's metric in spaces of Hamiltonian deformations of zero section in cotangent bundles over compact smooth manifolds to be minimal. We also prove that the induced distance on the group of Hamiltonian diffeomorphisms gives rise to the distance which is the same as Hofer's distance. © 2002 Elsevier Science B.V. All rights reserved. | en_US |
dc.relation.ispartof | Differential Geometry and its Application | en_US |
dc.subject | Floer homology | en_US |
dc.subject | Hofer's Geometry | en_US |
dc.subject | Lagrangian submanifolds | en_US |
dc.title | Action spectrum and Hofer's distance between Lagrangian submanifolds | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/S0926-2245(02)00093-1 | - |
dc.identifier.scopus | 2-s2.0-0036288885 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/0036288885 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 69 | en_US |
dc.relation.lastpage | 81 | en_US |
dc.relation.volume | 17 | en_US |
dc.relation.issue | 1 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0009-0009-9752-9894 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
6
checked on Nov 9, 2024
Page view(s)
19
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.