Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/144
DC FieldValueLanguage
dc.contributor.authorMilinković, Darkoen_US
dc.contributor.authorOh, Yong Geunen_US
dc.date.accessioned2022-08-06T16:37:26Z-
dc.date.available2022-08-06T16:37:26Z-
dc.date.issued1997-12-01-
dc.identifier.issn03049914-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/144-
dc.description.abstractWe prove that there exists a canonical level-preserving isomorphism between the stable Morse homology (or the Morse homology of generating functions) and the Floer homology on the cotangent bundle T*M for any closed submanifold TV ⊂ M for any compact manifold M.en_US
dc.relation.ispartofJournal of the Korean Mathematical Societyen_US
dc.subjectAction functionalen_US
dc.subjectConormal bundleen_US
dc.subjectCotangent bundleen_US
dc.subjectFloer homologyen_US
dc.subjectGenerating funtionsen_US
dc.subjectLagrangian submanifoldsen_US
dc.subjectMorse homologyen_US
dc.titleFloer homology as the stable Morse homologyen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-0040342557-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0040342557-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.lastpage1087en_US
dc.relation.volume34en_US
dc.relation.issue4en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0009-0009-9752-9894-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

9
checked on Dec 24, 2024

Page view(s)

6
checked on Dec 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.