Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/141
DC FieldValueLanguage
dc.contributor.authorKostić, Aleksandraen_US
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorPucanović, Zoran S.en_US
dc.contributor.authorRoslavcev, Majaen_US
dc.date.accessioned2022-08-06T16:26:19Z-
dc.date.available2022-08-06T16:26:19Z-
dc.date.issued2021-
dc.identifier.issn10053867en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/141-
dc.description.abstractLet R be an associative unital ring and not necessarily commutative. We analyze conditions under which every n×n matrix A over R is expressible as a sum A= E1 +...+ Es +N of (commuting) idempotent matrices Ei and a nilpotent matrix N.en
dc.relation.ispartofAlgebra Colloquiumen
dc.subjectIdempotent matrixen
dc.subjectMatrix ringen
dc.subjectNil-clean ringen
dc.subjectNilpotent matrixen
dc.titleOn the generalized strongly Nil-clean property of matrix ringsen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S1005386721000481-
dc.identifier.scopus2-s2.0-85118976780-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85118976780-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.description.rankM23en_US
dc.relation.firstpage625en
dc.relation.lastpage634en
dc.relation.volume28en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0009-0000-7578-3693-
crisitem.author.orcid0000-0002-8571-5210-
crisitem.author.orcid0000-0002-6545-421X-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

20
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.