Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/140
DC FieldValueLanguage
dc.contributor.authorKostić, Aleksandraen_US
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorPucanović, Zoran S.en_US
dc.contributor.authorRoslavcev, Majaen_US
dc.date.accessioned2022-08-06T16:26:18Z-
dc.date.available2022-08-06T16:26:18Z-
dc.date.issued2018-01-01-
dc.identifier.issn17872405en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/140-
dc.description.abstractThe conditions that allow an element of an associative, unital, not necessarily commutative ring R, to be represented as a sum of (commuting) idempotents and one nilpotent element are analyzed. Some applications to group rings are also presented.en
dc.relation.ispartofMiskolc Mathematical Notesen
dc.subjectgroup ringen
dc.subjectidempotentsen
dc.subjectnilpotent elementen
dc.titleA generalization of nil-clean ringsen_US
dc.typeArticleen_US
dc.identifier.doi10.18514/MMN.2018.2585-
dc.identifier.scopus2-s2.0-85110592622-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85110592622-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage969en
dc.relation.lastpage981en
dc.relation.volume19en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0009-0000-7578-3693-
crisitem.author.orcid0000-0002-8571-5210-
crisitem.author.orcid0000-0002-6545-421X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 20, 2024

Page view(s)

15
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.