Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1402
DC FieldValueLanguage
dc.contributor.authorBayer, Margareten_US
dc.contributor.authorDenker, Marken_US
dc.contributor.authorJelić Milutinović, Marijaen_US
dc.contributor.authorRowlands, Rowanen_US
dc.contributor.authorSundaram, Sheilaen_US
dc.contributor.authorXue, Leien_US
dc.date.accessioned2024-12-25T16:36:29Z-
dc.date.available2024-12-25T16:36:29Z-
dc.date.issued2024-06-01-
dc.identifier.issn08954801-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1402-
dc.description.abstractWe define the k-cut complex of a graph G with vertex set V (G) to be the simplicial complex whose facets are the complements of sets of size k in V (G) inducing disconnected subgraphs of G. This generalizes the Alexander dual of a graph complex studied by Fr\" oberg [Topics in Algebra, Part 2, PWN, Warsaw, 1990, pp. 57-70] and Eagon and Reiner [J. Pure Appl. Algebra, 130 (1998), pp. 265-275]. We describe the effect of various graph operations on the cut complex and study its shellability, homotopy type, and homology for various families of graphs, including trees, cycles, complete multipartite graphs, and the prism Kn \times K2, using techniques from algebraic topology, discrete Morse theory, and equivariant poset topology.en_US
dc.language.isoenen_US
dc.publisherSIAM Publicationsen_US
dc.relation.ispartofSIAM Journal on Discrete Mathematicsen_US
dc.subjectchordal graphen_US
dc.subjectdisconnected seten_US
dc.subjectgraph complexen_US
dc.subjecthomology representationen_US
dc.subjecthomotopyen_US
dc.subjectMorse matchingen_US
dc.subjectshellabilityen_US
dc.titleTopology of cut complexes of graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/23M1569034-
dc.identifier.scopus2-s2.0-85195102222-
dc.identifier.isi001237912300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85195102222-
dc.contributor.affiliationTopologyen_US
dc.relation.issn0895-4801en_US
dc.description.rankM22en_US
dc.relation.firstpage1630en_US
dc.relation.lastpage1675en_US
dc.relation.volume38en_US
dc.relation.issue2en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-6578-3224-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 25, 2024

Page view(s)

4
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.