Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/13
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.date.accessioned2022-08-06T14:49:07Z-
dc.date.available2022-08-06T14:49:07Z-
dc.date.issued2018-10-25-
dc.identifier.issn01399918en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/13-
dc.description.abstractWe investigate four-dimensional CR submanifolds in six-dimensional strict nearly Kähler manifolds. We construct a moving frame that nicely corresponds to their CR structure and use it to investigate CR submanifolds that admit a special type of doubly twisted product structure. Moreover, we single out a class of CR submanifolds containing this type of doubly twisted submanifolds. Further, in a particular case of the sphere we show that the two families of four-dimensional CR submanifolds, those that admit a three-dimensional geodesic distribution and those ruled by totally geodesic spheres S3 $ coincide, and give their classification, which as a subfamily contains a family of doubly twisted CR submanifolds.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofMathematica Slovacaen_US
dc.subjectCR submanifolden_US
dc.subjectdoubly twisted producten_US
dc.subjectnearly Kähler manifolden_US
dc.subjectruled submanifoldsen_US
dc.titleA class of four-dimensional CR submanifolds in six dimensional nearly Kähler manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/ms-2017-0175-
dc.identifier.scopus2-s2.0-85056004982-
dc.identifier.isi000448428200018-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85056004982-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0139-9918en_US
dc.description.rankM23en_US
dc.relation.firstpage1129en_US
dc.relation.lastpage1140en_US
dc.relation.volume68en_US
dc.relation.issue5en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

12
checked on Apr 8, 2025

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.