Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1397
DC FieldValueLanguage
dc.contributor.authorJovanović, Milicaen_US
dc.contributor.authorStojčič, Petaren_US
dc.date.accessioned2024-12-05T17:56:10Z-
dc.date.available2024-12-05T17:56:10Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1397-
dc.description.abstractIn this paper, we consider the following question: if all homology groups of a space X are finitely generated, and if R is a commutative ring with identity, is it true that the homology and cohomology R-modules Hi(X; R) and Hi(X; R) are also finitely generated? We show that the answer to this question is negative in general, but affirmative if R is an integral domain. In the case when R is a principal ideal domain, and Hi(X; R) is finitely generated for all i, we also discuss computing Hi(X; M ) and Hi(X; M ) for a finitely generated R-module M .en_US
dc.language.isoenen_US
dc.publisherBeograd : Društvo Matematičara Srbijeen_US
dc.relation.ispartofThe Teaching of Mathematicsen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjecthomologyen_US
dc.subjectcohomologyen_US
dc.subjectfinitely generated moduleen_US
dc.titleFinite generativity of homology and cohomology modulesen_US
dc.typeArticleen_US
dc.identifier.doi10.57016/TM-NSXY8680-
dc.relation.issn1451-4966en_US
dc.relation.firstpage112en_US
dc.relation.lastpage118en_US
dc.relation.volume27en_US
dc.relation.issue2en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.orcid0009-0006-2505-0321-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
tm2724.pdf148.65 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

8
checked on Dec 24, 2024

Download(s)

2
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons