Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1392
DC FieldValueLanguage
dc.contributor.authorBayer, Margareten_US
dc.contributor.authorJelić Milutinović, Marijaen_US
dc.contributor.authorVega, Julianneen_US
dc.date.accessioned2024-11-27T15:52:18Z-
dc.date.available2024-11-27T15:52:18Z-
dc.date.issued2023-07-01-
dc.identifier.issn0012365X-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1392-
dc.description.abstractA (general) polygonal line tiling is a graph formed by a string of cycles, each intersecting the previous at an edge, no three intersecting. In 2022, Matsushita proved the matching complex of a certain type of polygonal line tiling with even cycles is homotopy equivalent to a wedge of spheres. In this paper, we extend Matsushita's work to include a larger family of graphs and carry out a closer analysis of lines of triangles and pentagons, where the Fibonacci numbers arise.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofDiscrete Mathematicsen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectHomotopy typeen_US
dc.subjectIndependence complexen_US
dc.subjectMatching complexen_US
dc.subjectPolygonal tilingen_US
dc.titleGeneral polygonal line tilings and their matching complexesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2023.113428-
dc.identifier.scopus2-s2.0-85151297580-
dc.identifier.isi000969766100001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85151297580-
dc.contributor.affiliationTopologyen_US
dc.relation.issn0012-365Xen_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. 113428en_US
dc.relation.volume346en_US
dc.relation.issue7en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextembargo_20250401-
item.openairetypeArticle-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-6578-3224-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
1-s2.0-S0012365X23001140-am.pdf433.33 kBAdobe PDF
Embargoed until April 1, 2025    Request a copy
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

Page view(s)

9
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons