Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1392
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bayer, Margaret | en_US |
dc.contributor.author | Jelić Milutinović, Marija | en_US |
dc.contributor.author | Vega, Julianne | en_US |
dc.date.accessioned | 2024-11-27T15:52:18Z | - |
dc.date.available | 2024-11-27T15:52:18Z | - |
dc.date.issued | 2023-07-01 | - |
dc.identifier.issn | 0012365X | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1392 | - |
dc.description.abstract | A (general) polygonal line tiling is a graph formed by a string of cycles, each intersecting the previous at an edge, no three intersecting. In 2022, Matsushita proved the matching complex of a certain type of polygonal line tiling with even cycles is homotopy equivalent to a wedge of spheres. In this paper, we extend Matsushita's work to include a larger family of graphs and carry out a closer analysis of lines of triangles and pentagons, where the Fibonacci numbers arise. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Discrete Mathematics | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Homotopy type | en_US |
dc.subject | Independence complex | en_US |
dc.subject | Matching complex | en_US |
dc.subject | Polygonal tiling | en_US |
dc.title | General polygonal line tilings and their matching complexes | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.disc.2023.113428 | - |
dc.identifier.scopus | 2-s2.0-85151297580 | - |
dc.identifier.isi | 000969766100001 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85151297580 | - |
dc.contributor.affiliation | Topology | en_US |
dc.relation.issn | 0012-365X | en_US |
dc.description.rank | M22 | en_US |
dc.relation.firstpage | Article no. 113428 | en_US |
dc.relation.volume | 346 | en_US |
dc.relation.issue | 7 | en_US |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | embargo_20250401 | - |
item.openairetype | Article | - |
crisitem.author.dept | Topology | - |
crisitem.author.orcid | 0000-0002-6578-3224 | - |
Appears in Collections: | Research outputs |
Files in This Item:
File | Description | Size | Format | Existing users please |
---|---|---|---|---|
1-s2.0-S0012365X23001140-am.pdf | 433.33 kB | Adobe PDF | Request a copy | Embargoed until April 1, 2025
SCOPUSTM
Citations
2
checked on Dec 21, 2024
Page view(s)
9
checked on Dec 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License